Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38667288

RESUMO

As the treatment landscape for prostate cancer gradually evolves, the frequency of treatment-induced neuroendocrine prostate cancer (NEPC) and double-negative prostate cancer (DNPC) that is deficient for androgen receptor (AR) and neuroendocrine (NE) markers has increased. These prostate cancer subtypes are typically refractory to AR-directed therapies and exhibit poor clinical outcomes. Only a small range of NEPC/DNPC models exist, limiting our molecular understanding of this disease and hindering our ability to perform preclinical trials exploring novel therapies to treat NEPC/DNPC that are urgently needed in the clinic. Here, we report the development of the CU-PC01 PDX model that represents AR-negative mCRPC with PTEN/RB/PSMA loss and CTNN1B/TP53/BRCA2 genetic variants. The CU-PC01 model lacks classic NE markers, with only focal and/or weak expression of chromogranin A, INSM1 and CD56. Collectively, these findings are most consistent with a DNPC phenotype. Ex vivo and in vivo preclinical studies revealed that CU-PC01 PDX tumours are resistant to mCRPC standard-of-care treatments enzalutamide and docetaxel, mirroring the donor patient's treatment response. Furthermore, short-term CU-PC01 tumour explant cultures indicate this model is initially sensitive to PARP inhibition with olaparib. Thus, the CU-PC01 PDX model provides a valuable opportunity to study AR-negative mCRPC biology and to discover new treatment avenues for this hard-to-treat disease.


Assuntos
Piperazinas , Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Animais , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Feniltioidantoína/farmacologia , Feniltioidantoína/análogos & derivados , Feniltioidantoína/uso terapêutico , Metástase Neoplásica , Nitrilas/farmacologia , Modelos Animais de Doenças , Benzamidas/farmacologia , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico
2.
Mol Ther Oncolytics ; 25: 43-56, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35399606

RESUMO

Oncolytic virotherapies (OV) hold immense clinical potential. OV based on human adenoviruses (HAdV) derived from HAdV with naturally low rates of pre-existing immunity will be beneficial for future clinical translation. We generated a low-seroprevalence HAdV-D10 serotype vector incorporating an αvß6 integrin-selective peptide, A20, to target αvß6-positive tumor cell types. HAdV-D10 has limited natural tropism. Structural and biological studies of HAdV-D10 knob protein highlighted low-affinity engagement with native adenoviral receptors CAR and sialic acid. HAdV-D10 fails to engage blood coagulation factor X, potentially eliminating "off-target" hepatic sequestration in vivo. We engineered an A20 peptide that selectively binds αvß6 integrin into the DG loop of HAdV-D10 fiber knob. Assays in αvß6+ cancer cell lines demonstrated significantly increased transduction mediated by αvß6-targeted variants compared with controls, confirmed microscopically. HAdV-D10.A20 resisted neutralization by neutralizing HAdV-C5 sera. Systemic delivery of HAdV-D10.A20 resulted in significantly increased GFP expression in BT20 tumors. Replication-competent HAdV-D10.A20 demonstrated αvß6 integrin-selective cell killing in vitro and in vivo. HAdV-D10 possesses characteristics of a promising virotherapy, combining low seroprevalence, weak receptor interactions, and reduced off-target uptake. Incorporation of an αvß6 integrin-selective peptide resulted in HAdV-D10.A20, with significant potential for clinical translation.

3.
Biomolecules ; 12(2)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35204808

RESUMO

Aberrant activation of the Wnt pathway is emerging as a frequent event during prostate cancer that can facilitate tumor formation, progression, and therapeutic resistance. Recent discoveries indicate that targeting the Wnt pathway to treat prostate cancer may be efficacious. However, the functional consequence of activating the Wnt pathway during the different stages of prostate cancer progression remains unclear. Preclinical work investigating the efficacy of targeting Wnt signaling for the treatment of prostate cancer, both in primary and metastatic lesions, and improving our molecular understanding of treatment responses is crucial to identifying effective treatment strategies and biomarkers that help guide treatment decisions and improve patient care. In this review, we outline the type of genetic alterations that lead to activated Wnt signaling in prostate cancer, highlight the range of laboratory models used to study the role of Wnt genetic drivers in prostate cancer, and discuss new mechanistic insights into how the Wnt cascade facilitates prostate cancer growth, metastasis, and drug resistance.


Assuntos
Neoplasias da Próstata , Via de Sinalização Wnt , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/metabolismo
4.
Inflamm Bowel Dis ; 27(9): 1491-1502, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-33393634

RESUMO

BACKGROUND: The understanding of vascular plasticity is key to defining the role of blood vessels in physiologic and pathogenic processes. In the present study, the impact of the vascular quiescence marker SPARCL1 on angiogenesis, capillary morphogenesis, and vessel integrity was evaluated. METHODS: Angiogenesis was studied using the metatarsal test, an ex vivo model of sprouting angiogenesis. In addition, acute and chronic dextran sodium sulfate colitis models with SPARCL1 knockout mice were applied. RESULTS: This approach indicated that SPARCL1 inhibits angiogenesis and supports vessel morphogenesis and integrity. Evidence was provided that SPARCL1-mediated stabilization of vessel integrity counteracts vessel permeability and inflammation in acute and chronic dextran sodium sulfate colitis models. Structure-function analyses of purified SPARCL1 identified the acidic domain of the protein necessary for its anti-angiogenic activity. CONCLUSIONS: Our findings inaugurate SPARCL1 as a blood vessel-derived anti-angiogenic molecule required for vessel morphogenesis and integrity. SPARCL1 opens new perspectives as a vascular marker of susceptibility to colitis and as a therapeutic molecule to support blood vessel stability in this disease.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Colite , Proteínas da Matriz Extracelular/metabolismo , Neovascularização Patológica , Animais , Colite/induzido quimicamente , Sulfato de Dextrana , Camundongos , Camundongos Knockout
5.
Cancer Res ; 79(5): 970-981, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30622113

RESUMO

A subset of patients with gastric cancer have mutations in genes that participate in or regulate Wnt signaling at the level of ligand (Wnt) receptor (Fzd) binding. Moreover, increased Fzd expression is associated with poor clinical outcome. Despite these findings, there are no in vivo studies investigating the potential of targeting Wnt receptors for treating gastric cancer, and the specific Wnt receptor transmitting oncogenic Wnt signaling in gastric cancer is unknown. Here, we use inhibitors of Wnt/Fzd (OMP-18R5/vantictumab) and conditional gene deletion to test the therapeutic potential of targeting Wnt signaling in preclinical models of intestinal-type gastric cancer and ex vivo organoid cultures. Pharmacologic targeting of Fzd inhibited the growth of gastric adenomas in vivo. We identified Fzd7 to be the predominant Wnt receptor responsible for transmitting Wnt signaling in human gastric cancer cells and mouse models of gastric cancer, whereby Fzd7-deficient cells were retained in gastric adenomas but were unable to respond to Wnt signals and consequently failed to proliferate. Genetic deletion of Fzd7 or treatment with vantictumab was sufficient to inhibit the growth of gastric adenomas with or without mutations to Apc. Vantictumab is currently in phase Ib clinical trials for advanced pancreatic, lung, and breast cancer. Our data extend the scope of patients that may benefit from this therapeutic approach as we demonstrate that this drug will be effective in treating patients with gastric cancer regardless of APC mutation status. SIGNIFICANCE: The Wnt receptor Fzd7 plays an essential role in gastric tumorigenesis irrespective of Apc mutation status, therefore targeting Wnt/Fzd7 may be of therapeutic benefit to patients with gastric cancer.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Receptores Frizzled/metabolismo , Neoplasias Gástricas/metabolismo , Via de Sinalização Wnt , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Carcinogênese , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Receptores Frizzled/antagonistas & inibidores , Receptores Frizzled/genética , Deleção de Genes , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Camundongos , Mutação , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
6.
Cancer Discov ; 8(6): 764-779, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29581176

RESUMO

Genetic alterations that potentiate PI3K signaling are frequent in prostate cancer, yet how different genetic drivers of the PI3K cascade contribute to prostate cancer is unclear. Here, we report PIK3CA mutation/amplification correlates with poor survival of patients with prostate cancer. To interrogate the requirement of different PI3K genetic drivers in prostate cancer, we employed a genetic approach to mutate Pik3ca in mouse prostate epithelium. We show Pik3caH1047R mutation causes p110α-dependent invasive prostate carcinoma in vivo Furthermore, we report that PIK3CA mutation and PTEN loss coexist in patients with prostate cancer and can cooperate in vivo to accelerate disease progression via AKT-mTORC1/2 hyperactivation. Contrasting single mutants that slowly acquire castration-resistant prostate cancer (CRPC), concomitant Pik3ca mutation and Pten loss caused de novo CRPC. Thus, Pik3ca mutation and Pten deletion are not functionally redundant. Our findings indicate that PIK3CA mutation is an attractive prognostic indicator for prostate cancer that may cooperate with PTEN loss to facilitate CRPC in patients.Significance: We show PIK3CA mutation correlates with poor prostate cancer prognosis and causes prostate cancer in mice. Moreover, PIK3CA mutation and PTEN loss coexist in prostate cancer and can cooperate in vivo to accelerate tumorigenesis and facilitate CRPC. Delineating this synergistic relationship may present new therapeutic/prognostic approaches to overcome castration/PI3K-AKT-mTORC1/2 inhibitor resistance. Cancer Discov; 8(6); 764-79. ©2018 AACR.See related commentary by Triscott and Rubin, p. 682This article is highlighted in the In This Issue feature, p. 663.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Mutação , PTEN Fosfo-Hidrolase/genética , Neoplasias de Próstata Resistentes à Castração/genética , Animais , Linhagem Celular Tumoral , Progressão da Doença , Amplificação de Genes , Deleção de Genes , Humanos , Masculino , Camundongos , Invasividade Neoplásica , Neoplasias Experimentais , Prognóstico , Análise de Sobrevida
7.
J Clin Invest ; 126(11): 4187-4204, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27721236

RESUMO

Different tumor microenvironments (TMEs) induce stromal cell plasticity that affects tumorigenesis. The impact of TME-dependent heterogeneity of tumor endothelial cells (TECs) on tumorigenesis is unclear. Here, we isolated pure TECs from human colorectal carcinomas (CRCs) that exhibited TMEs with either improved (Th1-TME CRCs) or worse clinical prognosis (control-TME CRCs). Transcriptome analyses identified markedly different gene clusters that reflected the tumorigenic and angiogenic activities of the respective TMEs. The gene encoding the matricellular protein SPARCL1 was most strongly upregulated in Th1-TME TECs. It was also highly expressed in ECs in healthy colon tissues and Th1-TME CRCs but low in control-TME CRCs. In vitro, SPARCL1 expression was induced in confluent, quiescent ECs and functionally contributed to EC quiescence by inhibiting proliferation, migration, and sprouting, whereas siRNA-mediated knockdown increased sprouting. In human CRC tissues and mouse models, vessels with SPARCL1 expression were larger and more densely covered by mural cells. SPARCL1 secretion from quiescent ECs inhibited mural cell migration, which likely led to stabilized mural cell coverage of mature vessels. Together, these findings demonstrate TME-dependent intertumoral TEC heterogeneity in CRC. They further indicate that TEC heterogeneity is regulated by SPARCL1, which promotes the cell quiescence and vessel homeostasis contributing to the favorable prognoses associated with Th1-TME CRCs.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Neoplasias Colorretais/irrigação sanguínea , Neoplasias Colorretais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas de Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Microambiente Tumoral , Animais , Neoplasias Colorretais/patologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Células Jurkat , Camundongos , Neovascularização Patológica/patologia
8.
EMBO J ; 34(18): 2321-33, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26240067

RESUMO

Wnt pathway deregulation is a common characteristic of many cancers. Only colorectal cancer predominantly harbours mutations in APC, whereas other cancer types (hepatocellular carcinoma, solid pseudopapillary tumours of the pancreas) have activating mutations in ß-catenin (CTNNB1). We have compared the dynamics and the potency of ß-catenin mutations in vivo. Within the murine small intestine (SI), an activating mutation of ß-catenin took much longer to achieve Wnt deregulation and acquire a crypt-progenitor cell (CPC) phenotype than Apc or Gsk3 loss. Within the colon, a single activating mutation of ß-catenin was unable to drive Wnt deregulation or induce the CPC phenotype. This ability of ß-catenin mutation to differentially transform the SI versus the colon correlated with higher expression of E-cadherin and a higher number of E-cadherin:ß-catenin complexes at the membrane. Reduction in E-cadherin synergised with an activating mutation of ß-catenin resulting in a rapid CPC phenotype within the SI and colon. Thus, there is a threshold of ß-catenin that is required to drive transformation, and E-cadherin can act as a buffer to sequester mutated ß-catenin.


Assuntos
Caderinas/metabolismo , Transformação Celular Neoplásica , Neoplasias do Colo , Mutação , Proteínas de Neoplasias , Via de Sinalização Wnt , beta Catenina , Animais , Caderinas/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
9.
Biochem Biophys Res Commun ; 440(3): 364-70, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23998936

RESUMO

Colorectal cancer (CRC) is the fourth most common cause of cancer-related death worldwide. Accurate non-invasive screening for CRC would greatly enhance a population's health. Adenomatous polyposis coli (Apc) gene mutations commonly occur in human colorectal adenomas and carcinomas, leading to Wnt signalling pathway activation. Acute conditional transgenic deletion of Apc in murine intestinal epithelium (AhCre(+)Apc(fl)(/)(fl)) causes phenotypic changes similar to those found during colorectal tumourigenesis. This study comprised a proteomic analysis of murine small intestinal epithelial cells following acute Apc deletion to identify proteins that show altered expression during human colorectal carcinogenesis, thus identifying proteins that may prove clinically useful as blood/serum biomarkers of colorectal neoplasia. Eighty-one proteins showed significantly increased expression following iTRAQ analysis, and validation of nine of these by Ingenuity Pathaway Analysis showed they could be detected in blood or serum. Expression was assessed in AhCre(+)Apc(fl)(/)(fl) small intestinal epithelium by immunohistochemistry, western blot and quantitative real-time PCR; increased nucelolin concentrations were also detected in the serum of AhCre(+)Apc(fl)(/)(fl) and Apc(Min)(/)(+) mice by ELISA. Six proteins; heat shock 60kDa protein 1, Nucleolin, Prohibitin, Cytokeratin 18, Ribosomal protein L6 and DEAD (Asp-Glu-Ala-Asp) box polypeptide 5,were selected for further investigation. Increased expression of 4 of these was confirmed in human CRC by qPCR. In conclusion, several novel candidate biomarkers have been identified from analysis of transgenic mice in which the Apc gene was deleted in the intestinal epithelium that also showed increased expression in human CRC. Some of these warrant further investigation as potential serum-based biomarkers of human CRC.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Animais , Biomarcadores Tumorais/sangue , Neoplasias Colorretais/sangue , Neoplasias Colorretais/patologia , Deleção de Genes , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiologia , Camundongos , Camundongos Transgênicos , Proibitinas , Proteômica
10.
PLoS Genet ; 6(1): e1000816, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20084116

RESUMO

Contributions of null and hypomorphic alleles of Apc in mice produce both developmental and pathophysiological phenotypes. To ascribe the resulting genotype-to-phenotype relationship unambiguously to the Wnt/beta-catenin pathway, we challenged the allele combinations by genetically restricting intracellular beta-catenin expression in the corresponding compound mutant mice. Subsequent evaluation of the extent of resulting Tcf4-reporter activity in mouse embryo fibroblasts enabled genetic measurement of Wnt/beta-catenin signaling in the form of an allelic series of mouse mutants. Different permissive Wnt signaling thresholds appear to be required for the embryonic development of head structures, adult intestinal polyposis, hepatocellular carcinomas, liver zonation, and the development of natural killer cells. Furthermore, we identify a homozygous Apc allele combination with Wnt/beta-catenin signaling capacity similar to that in the germline of the Apc(min) mice, where somatic Apc loss-of-heterozygosity triggers intestinal polyposis, to distinguish whether co-morbidities in Apc(min) mice arise independently of intestinal tumorigenesis. Together, the present genotype-phenotype analysis suggests tissue-specific response levels for the Wnt/beta-catenin pathway that regulate both physiological and pathophysiological conditions.


Assuntos
Camundongos/genética , Camundongos/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos , Feminino , Fibroblastos/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/embriologia , Intestinos/crescimento & desenvolvimento , Fígado/embriologia , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Masculino , Camundongos/embriologia , Camundongos/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Wnt , Proteína Wnt3 , beta Catenina/genética
11.
Proc Natl Acad Sci U S A ; 105(48): 18919-23, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19033191

RESUMO

Dysregulated Wnt signaling is seen in approximately 30% of hepatocellular carcinomas; thus, finding pathways downstream of the activation of Wnt signaling is key. Here, using cre-lox technology, we deleted the Apc gene in the adult mouse liver and observed a rapid increase in nuclear beta-catenin and c-Myc, which is associated with an induction of proliferation that led to hepatomegaly within 4 days of gene deletion. To investigate the downstream pathways responsible for these phenotypes, we analyzed the impact of inactivating APC in the context of deficiency of the potentially key effectors beta-catenin and c-Myc. beta-catenin loss rescues both the proliferation and hepatomegaly phenotypes after APC loss. However, c-Myc deletion, which rescues the phenotypes of APC loss in the intestine, had no effect on the phenotypes of APC loss in the liver. The consequences of the deregulation of the Wnt pathway within the liver are therefore strikingly different from those observed within the intestine, with the vast majority of Wnt targets being beta-catenin-dependent but c-Myc-independent in the liver.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Fígado/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais/fisiologia , Proteínas Wnt/metabolismo , beta Catenina/deficiência , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Deleção de Genes , Fígado/citologia , Fígado/patologia , Masculino , Camundongos , Camundongos Transgênicos , Análise em Microsséries , Fenótipo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Wnt/genética , beta Catenina/genética
12.
BMC Cancer ; 8: 162, 2008 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-18533991

RESUMO

BACKGROUND: p53 is an important tumour suppressor with a known role in the later stages of colorectal cancer, but its relevance to the early stages of neoplastic initiation remains somewhat unclear. Although p53-dependent regulation of Wnt signalling activity is known to occur, the importance of these regulatory mechanisms during the early stages of intestinal neoplasia has not been demonstrated. METHODS: We have conditionally deleted the Adenomatous Polyposis coli gene (Apc) from the adult murine intestine in wild type and p53 deficient environments and subsequently compared the phenotype and transcriptome profiles in both genotypes. RESULTS: Expression of p53 was shown to be elevated following the conditional deletion of Apc in the adult small intestine. Furthermore, p53 status was shown to impact on the transcription profile observed following Apc loss. A number of key Wnt pathway components and targets were altered in the p53 deficient environment. However, the aberrant phenotype observed following loss of Apc (rapid nuclear localisation of beta-catenin, increased levels of DNA damage, nuclear atypia, perturbed cell death, proliferation, differentiation and migration) was not significantly altered by the absence of p53. CONCLUSION: p53 related feedback mechanisms regulating Wnt signalling activity are present in the intestine, and become activated following loss of Apc. However, the physiological Wnt pathway regulation by p53 appears to be overwhelmed by Apc loss and consequently the activity of these regulatory mechanisms is not sufficient to modulate the immediate phenotypes seen following Apc loss. Thus we are able to provide an explanation to the apparent contradiction that, despite having a Wnt regulatory capacity, p53 loss is not associated with early lesion development.


Assuntos
Transformação Celular Neoplásica/genética , Genes APC , Neoplasias Intestinais/genética , Intestino Delgado/fisiologia , Proteína Supressora de Tumor p53/genética , Animais , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Deleção de Genes , Regulação da Expressão Gênica , Neoplasias Intestinais/metabolismo , Neoplasias Intestinais/patologia , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Camundongos , Transdução de Sinais , Proteína Supressora de Tumor p53/biossíntese , Proteína Supressora de Tumor p53/deficiência , Proteínas Wnt/metabolismo
13.
Nature ; 446(7136): 676-9, 2007 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-17377531

RESUMO

The APC gene encodes the adenomatous polyposis coli tumour suppressor protein, germline mutation of which characterizes familial adenomatous polyposis (FAP), an autosomal intestinal cancer syndrome. Inactivation of APC is also recognized as the key early event in the development of sporadic colorectal cancers, and its loss results in constitutive activity of the beta-catenin-Tcf4 transcription complex. The proto-oncogene c-MYC has been identified as a target of the Wnt pathway in colorectal cancer cells in vitro, in normal crypts in vivo and in intestinal epithelial cells acutely transformed on in vivo deletion of the APC gene; however, the significance of this is unclear. Therefore, to elucidate the role Myc has in the intestine after Apc loss, we have simultaneously deleted both Apc and Myc in the adult murine small intestine. Here we show that loss of Myc rescued the phenotypes of perturbed differentiation, migration, proliferation and apoptosis, which occur on deletion of Apc. Remarkably, this rescue occurred in the presence of high levels of nuclear beta-catenin. Array analysis revealed that Myc is required for the majority of Wnt target gene activation following Apc loss. These data establish Myc as the critical mediator of the early stages of neoplasia following Apc loss.


Assuntos
Proteína da Polipose Adenomatosa do Colo/deficiência , Proteína da Polipose Adenomatosa do Colo/genética , Deleção de Genes , Genes APC , Genes myc/genética , Intestino Delgado/metabolismo , Proteínas Proto-Oncogênicas c-myc/deficiência , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/patologia , Animais , Enterócitos/metabolismo , Intestino Delgado/citologia , Masculino , Camundongos , Fenótipo , Proteínas Proto-Oncogênicas c-myc/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA